An End to End Introduction to GANs

An End to End Introduction to GANs

I bet most of us have seen a lot of AI-generated people faces in recent times, be it in papers or blogs. We have reached a stage where it is becoming increasingly difficult to distinguish between actual human faces and faces that are generated by Artificial Intelligence. In this post, I will help the reader to understand how they can create and build such applications on their own.
The Hitchhiker’s Guide to Feature Extraction

The Hitchhiker’s Guide to Feature Extraction

Good Features are the backbone of any machine learning model. And good feature creation often needs domain knowledge, creativity, and lots of time. In this post, I am going to talk about: Various methods of feature creation- Both Automated and manual Different Ways to handle categorical features Longitude and Latitude features Some kaggle tricks And some other ideas to think about feature creation.
The Nation of a Billion Votes

The Nation of a Billion Votes

It is election month in India and a quote by Dr. Rahat Indori sums it up pretty well. “सरहदों पर बहुत तनाव है क्या , पता तो करो चुनाव है क्या !” For English speakers, this means: Is there a lot of tension at the borders? just ask if the elections are on. This election India has talked about a lot of issues. News channels have talked about Patriotism, Socialism, Religion as well as terrorism.
A primer on *args, **kwargs, decorators for Data Scientists

A primer on *args, **kwargs, decorators for Data Scientists

Python has a lot of constructs that are reasonably easy to learn and use in our code. Then there are some constructs which always confuse us when we encounter them in our code. Then are some that even seasoned programmers are not able to understand. *args, **kwargs and decorators are some constructs that fall into this category. I guess a lot of my data science friends have faced them too.
Python’s One Liner graph creation library with animations Hans Rosling Style

Python’s One Liner graph creation library with animations Hans Rosling Style

I distinctly remember the time when Seaborn came. I was really so fed up with Matplotlib. To create even simple graphs I had to run through so many StackOverflow threads. The time I could have spent in thinking good ideas for presenting my data was being spent in handling Matplotlib. And it was frustrating. Seaborn is much better than Matplotlib, yet it also demands a lot of code for a simple “good looking” graph.
Make your own Super Pandas using Multiproc

Make your own Super Pandas using Multiproc

Parallelization is awesome. We data scientists have got laptops with quad-core, octa-core, turbo-boost. We work with servers with even more cores and computing power. But do we really utilize the raw power we have at hand? Instead, we wait for time taking processes to finish. Sometimes for hours, when urgent deliverables are at hand. Can we do better? Can we get better? In this series of posts named Python Shorts, I will explain some simple constructs provided by Python, some essential tips and some use cases I come up with regularly in my Data Science work.
Minimize for loop usage in Python

Minimize for loop usage in Python

Python provides us with many styles of coding. In a way, it is pretty inclusive. One can come from any language and start writing Python. However, learning to write a language and writing a language in an optimized way are two different things. In this series of posts named Python Shorts, I will explain some simple but very useful constructs provided by Python, some essential tips and some use cases I come up with regularly in my Data Science work.